SUMMARY

2.13 The individual memory cells used in computers are bistable in operation
and capable of storing a single binary bit. Therefore, it is most practical to use the
binary number system to represent numbers, and this system was explained along
with conversion techniques to and from decimal.

Negative numbers are represented in computers by using a sign bit which is
a 1 when the number is negative and a 0 for positive numbers. Negative numbers
are often represented by using 1s or 2s complement form, and this was described
along with examples showing how mixed numbers represented in that form can be
added or subtracted.

The direct representation of decimal numbers can be accomplished by using
a binary-coded-decimal (BCD) representation. This was explained, and examples
were given.

The octal and hexidecimal number systems were described. These are useful
in representing binary numbers in a compact form and to facilitate communication
of values in written presentations. Computers are often organized with numbers
represented in groups of 8 bits which makes hexadecimal particularly useful at this
time.

QUESTIONS
2.1 Convert the following decimal numbérs to equivalent binary numbers:
(a) 43 (b) 64 (c) 4096
(d) 0.375 e # (f) 0.4375
(&) 512.5 (h) 131.5625 (1) 2048.0625:
2.2 Convert the following numbers to the equivalent binary numbers:
(@) 14 (b 0.25 - (c) 2%
(d) 6.25 (e) 23 (f) 0.625
2.3  Convert the following: binary numbers to equivalent decimal numbers:
(a) 1101 (b) 11011 (c) 1011
(d) 0.1011 (e) 0.001101 (f) 0.001101101

(g) 111011.1011 (k) 1011011.001101 () 10110.0101011101

2.4 Convert the following binary numbers to equivalent decimal numbers:

(a) 1011 (b) 11000 (c) 100011
(d) 11011 (e) 111001 (f) 1011010

2.5 Convert the following binary numbers to equivalent decimal numbers:
(a) 1011 (b)y 100100 (c) 10011
(d) 0.1101 (e) 0.1001 (f) 0.0101
(g) 1011.0011 (h) 1001.1001 () 101.011

2.6 Convert the following binary numbers to equivalent decimal numbers;
(@ 0.111 (b) 0.11011 (o) 1.011

(d) 111.1011 (e) 0110.0101 (f) 101.101011
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2.7 Perform the following additions and check by converting the binary numbers
to decimal:

(a) 1001.1 + 1011.0t (b) 100101 + 100101

(¢) 0.1011 + 0.1101 (d) 1011.01 + 1001.11

2.8 Perform the following additions and check by converting the binary numbers
to decimal and adding:
(a) 1011 + 1110 (b) 1010 + 1111 (¢) 10.11 + 10.011
(d) 1101.11 + 1.11  (e) 11111.1 + 10010.1  (f) 101.1 + 111.11

2.9 Perform the following additions and check by converti 1 the binary numbers
to decimal:

(a) 1101.1 + 1011.1 (b) 101101 + 1101101

(¢) 0.0011 + 0.1110 (d) 1100.011 + 1011.011

2.10 Perform the following subtractions in binary and check by converting the
numbers to decimal and subtracting:
(a) 1101 — 1000 (b) 1101 — 1001 (¢) 1011.1 — 101.1
(d) 1101.01 — 1011.1  (e) 111.11 — 101.1  (f) 1101.1 — 1010.01

2.11 Perform the following subtractions in the binary number system:

(a) 64 — 32 () 127 — 63

(c) 93.5 — 42.75 (d) 8445 — 4875
2.12 Perform the following subtractions in the binary number system:

(a) 128 — 32 (OREE; (c) 2% — 4%

(@ 31 - % (e) 62 — 31t (f) 129 - 35
2.13 Perform the following subtractions in the binary number system:

(a) 37 — 35 (b) 128 — 64

(c) 94.5 — 43.75 (d) 255 - 127
2.14 Perform the following multiplications and divisions in the binary number
system:

(@) 16 x 8 () 31 X 14 (c) 23 x 3.525

(d) 15 x 8.625 (e) 6 +2 (H16 + 8
2.15 Perform the following multiplications and divisions in the binary number
system:

(@ 24 x 12 ) 18 x 14 (c) 32 + 8

d) 27 + 18 (e) 49.5 x 51.75 (f) 58.75 + 23.5
2.16 Perform the following multiplications and divisions in the binary number
system:

(@) 16 x 2.75 () 19 + 6 (c) 2568 + 128%

(d) 31.5 + 15.75 () 3+% (f) 28 x 1§
2.17 Perform the following multiplications and divisions in the binary number
system:

(@) 15 x 13 () 10 x 15 (c) 44 + 11

d) 42 + 12 (e) 775 x 2.5 (f) 22.5 x 475
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Convert the following decimal numbers to both their 9s and 10s comple-

(@ 9 (b) 19 (c) 8

(d) 24 (e) 25 N 99

Convert the following decimal numbers into both their 9s and 10s comple-
(a) 5436 (b) 1932 (c) 45.15 (d) 18.293
Convert the following decimal numbers into both their 9s and 10s comple-
(@) 95 b) 719 (c) 0.83

(d) 0.16 (e) 298.64 (f) 332.52

Convert the following decimal numbers to both their 9s and 10s comple-
(a) 3654 (b) 2122 (c) 54.19 (d) 37.263
Convert the following binary numbers to both their 1s and 2s complements:
(a) 1101 (b) 1010 (c) 1111

(d) 1110 (e) 1011 (f) 1011

Convert the following binary numbers to both their 1s and 2s complements:
(a) 1011 (b) 11011 (c) 1011.01 (d) 11011.01
Convert the following binary numbers to both their 1s and 2s complements:
(a) 1011 (» 1101 (¢) 0.0111

(d) 0.101 (e) 11.101 (f) 101.011

Convert the following binary numbers to both their 1s and 2s complements:
(a) 101111 (b) 100100

{¢) 10111.10 (d) 10011.11 \
Perform the following subtractions, using both 9s and 10s complements:
(@) 8 — 4 b) 16 — 8 (c) 198 — 124
(d) 28.5 — 234 (e) 27.6 — 234 (f) 0.55 - 0.42
Perform the following subtractions, using both 9s and 10s complements:
(a) 948 — 234 (b) 347 — 263 '

T (c) 349.5 — 2453 (d) 412.7 ~ 409.2
Perform the following subtractions, using both 9s and 10s complements:
(@) 14 - 9 )15 -9 . (c) 0.5 — 40.24
(d) 0.41 — 04 (e) 0.434 — 0.33 (f) 1.2 - 0.34
Perform the following subtractions, using both 9s and 10s complements:
(@) 1024 — 913 (b) 249 - 137
(©) 24.1 - 134 (d) 239.3 — 1194

2.30

Perform the following subtractions of binary numbers, using both 1s and

2s complements:

(a) 1010 — 1011 (b) 110 — 10 (c) 110 — 0.111
(d) 0.111 - 0.1001 (e) 0.1111 — 0.101 (f) 11.11 - 10.111
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2.31 Perform the following subtractions, using both 1s and 2s complements:
(a) 1011 — 101 (b) 11011 - 11001
(c) 10111.1 — 10011.1 (d) 11011 — 10011.11

2.32 How many different numbers can be stored in a set of four switches, each
having three different positions (four three-position switches)?

2.33 How many different binary numbers can be stored in a register consisting
of six switches?

2.34 How many different BCD numbers can be stored in 12 switches? (Assume
two-position, or on-off switches.)

2.35 How many different BCD numbers can be stored in a register containing
12 switches using an 8, 4, 2, 1 code? Using an excess-3 code?

2.36 Write the first 12 numbers in the base 4 (or quaternary) number system.

2.37 Write the first 10 numbers in the quaternary number system, which has a
base, or radix, of 4. Use the digits 0. 1, 2, and 3 to express these numbers.

- 2.38 Write the first 20 numbers in the base 12 (or duodecimal) number system.

Use A for 10 and B for 11.

2.39 Write the first 25 numbers in a base 11 number system, using the digits 0,
1,2,3,4,5,6,7, 8,9, and A to express the 25 numbers that you write. (Decimal
10 = A, for instance.)

2.40 Perform the following subtractions in the binary number system, using 1s

complements:

(a) 1111 - 1001 (b) 1110 — 1011

(o) 101.11 - 101.01 (d) 111.1 — 100.1
2.41 Using the 1s complement number system, perform the following subtrac-
tions:

(a) 0.1001 — 0.0110 () 0.1110 — 0.0110

(c) 0.01111 - 0.01001 (d) 11011 — 1100t

(e) 1110101 — 1010010
2.42 Perform the following subtractions in the binary number system, using 2s

complements:
(@) 1111 — 110 (b) 1110 — 1100
(c) 1011.11 — 101.001 (d) 111.1 - 110.1

2.43 Using the 2s complement number system, perform the following subtrac-
tions and represent the answers as decimal fractions:

(a) 0.101010 — 0.010101 () 0.11001 — 0.00100

(c) 0.111000 — 0.000111 (d) 0.101100 — 0.010011
2.44 Convert the following hexadecimal numbers to decimal numbers:

(a) 15 (b) B8 (c) AB4

(d 9.B (e) 9.1A

2.45 Convert the following hexadecimal numbers to decimal:
(a) B6C7 (b) 64AC (c) A492 (d) D2763
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Convert the following octal numbers to decimal: 58

(a) 15 (b) 125 (c) 115

(d) 124 (e) 156 (N 15.6

Convert the following octal numbers to decimal;

(a) 2376 (b) 2473 (c) 276431 (d) 22632

Convert the following binary numbers to octal:

(a) 110 (b) 111001 (c) 111.111

(d) 0.11111 (e) 10.11 (f) 1111.1101

Convert the following binary numbers to octal: QUESTIONS

(a) 101101 (b) 101101110 (o) 10110111

(d) 110110.011 (e) O11.1011011

Convert the following octal numbers to binary:

(a) 54 (b) 44 (c) 232.2 ~LEGE OF

(d) 232.4 (e) 453.45 (f) 31.234 s?ﬁ:;ﬁgﬂaﬁ.\i 5TUDIES
G i L

Convert the following octal numbers to binary: P . kg [.01_3..

(a) 7423 (b) 3364 (c) 33762 ACC No.!...... B

(d) 3232.14 (e) 3146.52 CALL NO.Ziicreassssanssssasssnnssces

Convert the following decimal numbers to octal:

(a) 17 b) 8 (© 19

(d) 0.55 (e) 0.625 (f) 2.125

Convert the following decimal numbers to octal:

(a) 932 b) 332 (c) 545.375

(d) 632.97 (e) 4429.625

Convert the following hexadecimal numbers to binary:

(@) 9 (b) 1B (¢) 0.A1

(d) 0.AB (e) AB (f) 12.B

Convert the following hexadecimal numbers to binary:

(a) CD (b) 6A9 (o) Al4

(d) AA.1A (e) AB2.234

Convert the following binary numbers to hexadecimal:

(a) 1101.0110 (b) 11011110 (o) 1111

(d) 11101 (e) 11110.01011 (f) 1011.11010

Convert the following binary numbers to hexadecimal:

(a) 10110111 (b) 10011100 (c) 1001111

(d) 0.01111110 (e) 101101111010

2.58 A simple rule for multiplying two digits in any radix is simply to multiply
the two digits in decimal. If the product is less than the radix, take it; if greater,
divide (in decimal) by the radix: and use the remainder as the first, or least signif-
icant, position and the quotient as the carry, or most significant, digit. In base 6,
then2 X 2 = 4,3 X 1 = 3, etc.; however, 2 X 4 = 8, and

1

6)8.



58 Then regrouping yields

1 1001 1100

o Nmgrmnd! Nt

1 9 C

So

412, = 19C
NUMBER SYSTEMS Convert the following decimal numbers to hexadecimal:
(a) 24 (b) 397 (c) 1343
(d) 513 (e) 262



BOOLEAN ALGEBRA AND GATE NETWOGKS

Modemn digital computers are designed and maintained, and their operation is
analyzed, by using techniques and symbology from a field of mathematics called
modern algebra. Algebraists have studied for over a hundred years mathematical
systems called boolean algebras. Nothing could be more simple and normal to
human reasoning than the rules of boolean algebra, for these originated in studies
of how we reason, what lines of reasoning are valid, what constitutes proof, and
other allied subjects.

The name boolean algebra honors a fascinating' English mathematician,
George Boole, who in 1854 published a classic book, An Investigation of the Laws
of Thought, on Which Are Founded the Mathematical Theories of Logic and Prob-
abilities. Boole’s stated intention was to perform a mathematical analysis of logic.

Starting with his investigation of the laws of thought, Boole constructed a
“‘logical algebra.”’ This investigation into the nature of logic and ultimately of
mathematics led subscquent mathematicians and logicians into several new fields
of mathematics. Two . of these, known as the calculus of propositions and the
algebra of sets, were based principally on Boole’s work. In this book we designate
the algebra now used in the design and maintenance of logical circuitry as boolean
algebra.?

!George Boole was the son of a shoeniaker. His formal education ended in the third grade. Despite
this, ke was a brilliant scholar, teaching Greek and Latin in his own school, and an accepted mathe-
matician who made lasting contributions in the areas of differential and difference equations as well as
in algebra.

2This algebra is sometimes called switching algebra. It is, in fact, only one of several realizations of
what modern algebraists call boolean algebra.
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There are several advantages in having a mathematical technique for the
description of the internal workings of a computer. For one thing, it is often far
more convenient to calculate with expressions used to represent switching circuits
than it is to use schematic or even logical diagrams. Further, just as an ordinary
algebraic expression may be simplified by means of the basic theorems, the expres-
sion describing a given switching circuit network may be reduced or simplified.
This enables the logical designer to simplify the circuitry used, achieving economy
of construction and reliability of operation. Boolean algebra also provides an eco-
nomical and straightforward way of describing the circuitry used in computers. In
all, a knowledge of boolean algebra is indispensable in the computing field.

OBJECTIVES

1 The design and maintenance of digital computers .are greatly facilitated by
the use of boolean algebra and block diagrams. Both of these are explained, as is
their usage in designing networks using logic gates. '

2  The major types of gates now in use are AND, OR, NOR, and NAND gates.
These are explained, and design procedures using these gates are presented.

3  To simplify the construction of computers, the gate networks are simplified
as much as possible. Both algebraic techniques and graphical (map) techniques
exist which can be used; both are discussed with emphasis on the map minimization
procedures.

4  Logic networks are generally laid out in a two-level form such as AND-OR,
NAND-NAND, etc. These forms are described, and design procedures for the
forms are presented.

8  There are several special characteristics of gates which can influence logic
design (such as wired OR and wired AND gates). These are described, as are
special forms such as NAND-AND and NOR-OR.

6  Integrated-circuit (IC) manufacturing techniques now make it possible to
package many gates in a single IC package (chip). Often these arrays of gates are
laid out in some regular form for large-scale integration and typical forms are
presented, including those for programmable logic arrays, programmable array
logic, and gate array logic.

FUNDAMENTAL CONCEPTS OF BOOLEAN ALGEBRA

3.1 When a variable is used in an algebraic formula, it is generally assumed that
the variable may take any numerical value. For instance, in the formula 2X -
5Y = Z, we assume that X, Y, and Z may range through the entire field of real
numbers.

The variables used in boolean equations have a unique characteristic, how-
ever; they may assume only one of two possible values. These two values may be

tOr T and F, or + and —, etc. However, 0 and 1 are almost universally used in computer work.



represented by the symbols 0 and 1.1 If an equation describing logical circuitry
has several variables, it is still understood that each of the variables can assume
only the value O or 1. For instance, in the equation X + Y = Z, each of the
variables X, Y, and Z may have only the values 0 or 1.

This concept will become clearer if a symbol is defined, the + symbol.
When the + symbol is placed between two variables, say X and Y, since both X
and Y can take only the role O or 1, we can define the + symbol by listing all
possible combinations for X and Y and the resulting values of X + Y.

The possible input and output combinations may be arranged as follows:

0
0
1
1

+ 4+ + +

0
1 =
0
1

_———

This is a logical addition table and could represent a standard binary addition
table except for the last entry. When both X and Y represent ls, the value of X .+
Yis 1. The + symbol, therefore, does not have the ‘‘normal’’ meaning, but is a
logical addition or logical OR symbol. The equation X + ¥ = Z can be read ‘X
or Y equals Z’’ or “‘X plus Y equals Z.* This concept may be extended to any
number of variables. For instance, in the equationA + B + C + D = E, even
if A, B, C, and D all had the value of 1, E would represent only a 1.

To avoid ambiguity, a number of other symbols have been recommended as
replacements for the + sign. Some of these® are U, v, and V. Computer people
still use the + sign, however, which was the symbol originally proposed by Boole..

LOGICAL MULTIPLICATION

3.2 A second important operation in boolean algebra we call logical multipli-
cation or the logical AND operation.* The rules for this operation can be given
by simply listing all values that might occur:

I
-0 OO

0-0
0-1
1-0
1-1

Thus, for instance, if we writt Z = X - Yand find X = Qand Y = 1, thenZ =
0. Only when X and Y are both 1s would Z be a 1.

Both + and - obey a mathematical rule called the associative law. This law
says, for +, that X + Y) + Z = X + (Y + Z) and, for -, that X-(Y:Z) =
(X'Y)-Z. This means that we can write X + Y + Z without ambiguity, for no
matter in what order the operation is performed, the result is the same. That is,

*The preceding equation might then be writen A UBU C U D = E.

“It is necessary to know both the terms logical addition and OR operation for the + symbol and the
terms logical multiplication and AND operation for the - symbol since all these terms are actively used
in computer manuals, technical journals, and trade magazines. The term X + Y is called a sum term
or OR term in computer literature, for example.

61
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FIGURE 3.1

ORing X and Y and then ORing Z gives the same result as ORing Y and Z and
then ORing X. We can test this for both + and - by trying all combinations.

Note that while either +’s or ’s can be used freely, the two cannot be mixed
without ambiguity in the absence of further rules. For instance, does A-B + C
mean (A-B) + C or A-(B + C)? The two form different values for A = 0, B =
0, and C = 1, for then we have (0-0) + 1 = 1and 0-(0 + 1) = 0O, which differ.
(Always operating from left to right will alleviate this. This technique is used in
some programming languages, but not usually by algebraists or computer designers
or maintenance personnel.) The rule which is used is that - is always performed
before +. Thus X:Y + Z is the same as (X'Y) + Z, and X-Y + X-Z means the
same as (X-Y) + (X-Z).

AND GATES AND OR GATES

.3.3 The + and - operations are physically realized by two types of electronic

circuits, called OR gates and AND gates. We treat these as ‘‘black boxes,’” de-
ferring until later any discussion of how the actual circuitry operates.

A gate is simply an electronic circuit which operates on one or more input
signals to produce an output signal. One of the simplest and most frequently used
gates is called the OR gate, and the block diagram symbol for the OR gate is
shown in Fig. 3.1, as is the table of combinations for the inputs and outputs for
the OR gate. Since the inputs X and Y are signals with values either 0 or 1 at any
given time, the output signal Z can be described by simply listing all values for X
and Y and the resulting value for Z. A study of the table in Fig. 3.1 indicates that
the OR gate ORs or logically adds its inputs.

Similarly, the AND gate in Fig. 3.2 ANDs or logically multiplies input
values, yielding an output Z with value X-Y, so that Z is a ! only when both X and
Y are Is.

Just as the + and - operations could be extended to several variables by
using the associative law, OR gates and AND gates can have more than two inputs.
Figure 3.3 shows three input OR and AND gates and the table of all input com-
binations for each. As might be hoped, the OR gate with input X, Y, and Z has a
1 output if X or Y or Z is a 1, so that we can write X + ¥ + Z for its output.

OR gate.

P
Y
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FIGURE 3.2

AND gate.
W=X+Y+2Z

N
N

FIGURE 3.3

Three-input OR and

i . D .
Also, the output of the AND gate with inputs, X, ¥, and Z is a | only when all AND gates

three of the inputs are Is, so that we can write the output as X-Y-Z.

The above argument can be extended. A four-input OR gate has a 1 output
when any of its inputs is a 1, and a four-input AND gate has a 1 output only when
all four inputs are ls. .

It is often convenient to shorten X:Y-Z to XYZ, and we sometimes use this
convention.

COMPLEMENTATION AND INVERTERS

3.4 The two operations defined so far have been what algebraists would call
binary operations in that they define an operation on two variables. There are also
singular or unary, operations, which define an operation on a single variable. A
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FIGURE 3.4

familiar example of unary operation is —, for we can write —5 or - 10 or —X,
meaning that we are to take the negative of these values. (The - is also used as
a binary operation symbol for subtraction, which makes it a familiar but ambiguous
example.)

In boolean algebra we have an operation called complementation, and the
symbol we use is . Thus we write X, meaning *‘take the complement of X,"’ or
(X + Y), meaning ‘‘take the complement of X + Y.’ The complement operation
can be defined quite simply:

1
=0

—_| Ol
]

_The complement of a value can be taken repeatedly. For instance, we can
find X: ForX = Oitis 0 =1 = 0= 1,andforX = litis 1 =0 =1=0. _

A useful rule is based on the fact that X =X Checking, we find that 0=
1=0and1 = 0 = 1. [This rule—that double complementation gives the original
value—is an important characteristic of a boolean algebra which does not generally
hold for most unary operations. For instance, the rule does not hold for the oper-
ation of squaring a real number: (3%)> = 81, not 3.]

The complementation operation is physically realized by a gate or circuit
called an inverter. Figure 3.4(a) shows an inverter and the table of combinations
for its input and output. Figure 3.4(b) shows also that connecting two inverters in
series gives an output equal to the input, and this is the gating counterpart to the
law of double complementation, X = X.

Several other symbols have been used for the complementation symbol. For
instance, ~ is often used by logicians who write ~X and read this ‘‘the negation
of X.”” The symbol ' has been used by mathematicians and computer people; thus
X' is the complement of X in these systems. The overbar symbol is now used by
the American National Standards Institute and military standards, as well as by
most journals and manufacturers, and we use it.

(a) Block diagram of
an inverter. (b) Two
inverters in series.

> X X=X




EVALUATION OF LOGICAL EXPRESSIONS

3.5 The tables of values for the three operations just explained are sometimes
called truth tables, or tables of combinations. To study a logical expression, it is
very useful to construct a table of values for the variables and then to evaluate the
expression for each of the possible combinations of variables in turn. Consider the
expression X + YZ. There are three variables in this expression: X, Y, and Z, each
of which can assume the value 0 or 1. The possible combinations of values may
be arranged in ascending order,’ as in Table 3.1.

One of the variables, Z, is complemented in the expression X + YZ. So a
column is now added to the table listing values of Z (see Table 3.2).

A column is now added listing the values that YZ assumes for each value of
X, Y, and Z. This column will contain the value 1 only when both Y is a 1 and Z
is a 1 (see Table 3.3).

Now the ORing, or logical addition, of the values of X to the values which
have been calculated for YZ is performed in a final column (see Table 3.4).

The final column contains the value of X + YZ for each set of input values
which X, ¥, and Z may take. For instance, when X = 1,Y = 0,and Z = 1, the
expression has the value of 1.

Note that the variables in each row of this table may be combined into a binary number. The binary
numbers will then count from 000 to 111 in binary, or from 0 to 7 decimal. Sometimes each row is
numbered in decimal according to the number represented. Then reference may be made to the row by
using the decimal number. For instance, row 0 has values of 0, 0, 0, for X, Y, and Z, row 6 has values
of 1, 1, 0, and row 7 has values of 1, 1, I.

TABLE 3.1

TABLE 3.2

EVALUATION
OF LOGICAL
EXPRESSIONS
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TABLE 3.3
X Y

TABLE 3.4

X

EVALUATION OF AN EXPRESSION
CONTAINING PARENTHESES

3.6 The following example illustrates the procedure for constructing a truth table
for the expression X + Y(X + Y). There are only two variables in the expression,
X and Y. First a table of the values which X and ¥ may assume is constructed (see
Table 3.5).

Now, since the expression contains both X and Y, two columns are added
listing complements of the original values of the variables (see Table 3.6).

The various values of X + Y are now calculated (see Table 3.7).

The values for X + Y are now multiplied (ANDed) by the values of Y in the
table, forming another column representing Y(X + Y) (see Table 3.8).

Finally the values for Y(X + 7) are added (ORed) to the values for X which
are listed, forming the final column and completing the table (see Table 3.9).

Inspection of the final column of the table indicates that the values taken by
the function X + Y(X + Y) are identical with the values found in the table for
ORing X and Y. This indicates that the function X + Y(X + Y) is equivalent to

TABLE 3.5



TABLE 3.6

TABLE 3.7

TABLE 3.8
YIX + )

TABLE 3.9

YIX + V) X+ YX +7)

—l-‘QQ >

“omo
O s it

the function X + Y. This equivalence has been established by trying each possible
combination of values in the variables and noting that both expressions then have
the same value. This is called a proof by perfect induction. If a logic circuit -were
constructed for each of the two expressions, both circuits would perform the same
function, yielding identical outputs for each combination of inputs.

BASIC LAWS OF BOOLEAN ALGEBRA

3.7 Some fundamental relations of boolean algebra have been presented. A com-
plete set of the basic operations is listed below.® Although simple in appearance,

SActually, a number of possible sets of postulates may be used to define the algebra. The particular
treatment of boolean algebra given here is derived from that of E. V. Huntington and M. H. Stone.
The author would also like to acknowledge the influence of I. S. Reed and S. H. Caldwell on this
development of the concepts of the algebra.
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these rules may be used to construct a boolean algebra,’ determining all the relations
that follow:

IfX #0, then X = 1
and
IfxX#1, thenX = 0
OR OPERATION AND OPERATION
(LOGICAL ADDITION) (LOGICAL MULTIPLICATION) COMPL E_MENT RULES
04+0=0 00=0 0=1
0+1=1 0:0=20 1=0
1+0=1 1:0=0
1+1=1 I'1 =1

A list of useful relations is presented in Table 3.10. Most of the basic rules
by which boolean algebra expressions may be manipulated are contained in this
table. Each rule may be proved by using the proof by perfect induction. An example
of this proof for rule 3 in Table 3.10 is as follows: The variable X can have only
the value O or 1. If X has the value 0, then 0 + 0 = 0; if X has the value 1, then
I + 1 = 1. Therefore X + X = X.

"These rules are used to construct an example, or realization, of a boolean algebra. We note that,
strictly speaking, this boolean algebra consists of a set B of two elements which we call 0 and 1. an
addition operation +, a multiplication operation -, and a complement operation . There are other
boolean algebras (an infinite number), but this was Boole’s original algebra. This algebra is sometimes

called switching algebra to identify it more closely, but it is the same as propositional calculus, for
instance.



The same basic technique may be used to prove the remainder of the rules.
Rule 9 states that double complementation of a variable results in the original
variable. If X equals O, then the first complement is 1 and the second will be 0,
the original value. If the original value for X is 1, then the first complement will
be 0 and the second 1, the original value. Therefore X = X.

Rules 10 and 11, which are known as the commutative laws, express the fact
that the order in which a combination of terms is performed does not affect the
result of the combination. Rule 10 is the commutative law of addition, which states
that the order of addition or ORing does not affect the sum (X + Y = Y + X).
Rule 11 is the commutative law of multiplication (XY = YX), which states that
the order of multiplication or ANDing does not affect the product.

Rules 12 and 13 are the associative laws. Rule 12 states that in the logical
addition of several terms, the sum which will be obtained if the first term is added
to the second and then the third term is added will be the same as the sum obtained
if the second term is added to the third and then the first term is added [X +
(Y +Z) = (X + Y) + Z]. Rule 13 is the associative law of logical multiplication,
stating that in a product with three factors, any two may be multiplied, followed
by the third [X(YZ) = (XY)Z].

Rule 14, the distributive law, states that the product of a variable (X) times
a sum (Y + Z) is equal to the sum of the products of the variable multiplied by
each term of the sum [X(Y + Z) = XY + XZ].

The three laws, commutative, associative, and distributive, may be extended
to include any number of terms. For instance, the commutative law for logical
addition states that X + Y = Y + X. This may be extended to

X+Y+Z+A=A+Y+Z+X

The commutative law for logical multiplication also may be extended: XYZ = YZX.
These two laws are useful in rearranging the terms of an equation.
The terms also may be combined:

X+Y)+Z+A=AA+YN+X+ 2

and (XY)ZA) = (XA)(ZY). These two laws are useful in regrouping the terms of
an equation.
The distributive law may be extended in several ways:

XY+ Z+ A) =XY +XZ + XA

If two sums, such as W + X and ¥ + Z, are to be multiplied, then one of the
sums is treated as a single term and multiplied by the individual terms of the other
sum. The results are then multiplied according to the distributive law. For instance.

W+X) Y +2Z2)y=WY+2Z)+ XY +Z) = WY + WZ + XY + XZ

BASIC LAWS OF
BOOLEAN ALGEBRA
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3.8 Notice that, among others, rule 17 does not apply to ‘‘normal’’ algebra. The
rule may be obtained from the preceding rules as follows:

X+ Y)YX + 2)

XX + XZ + XY +YZ where XX = X, rule 7
X+ XZ + XY +YZ
=X+ XY+ XZ+YZ

=X1+Y)+ZX +Y) where 1 + Y = 1, rule 2
=X+ZX +7Y)

BOOLEAN ALGEBRA

AND GATE =X+ XZ +YZ

NETWORKS =X(1+2)+YZ where 1 + Z = 1, rule 2
=X+YZ

Therefore
X+YV)VX+2)=X+YZ

Since rule 17 does not apply to normal algebra, it is interesting to test the
rule by using the proof by perfect induction. It will be necessary to construct truth
tables for the right-hand (X + YZ) and left-hand [(X + Y)(X + Z)] members of
the equation and compare the results (see Tables 3.11 and 3.12).

The last column of the table for the function X + YZ is identical with the
last column of the table for (X + Y)(X + Z). This proves (by means of the proof
by perfect induction) that the expressions are equivalent.

Rules 15 and 16 are also not rules in normal algebra. The following is a

TABLE 3.11
X Y

TABLE 312
X Y X+ YWX+2




proof of rule 15 using preceding rules:
X+ XZ=X(1 +2) distributive law
And since | + Z = 1 by rule 2,
X + XZ = X(I) and X =X by rule 6
Therefore
X+XZ=X

It is worthwhile to try to prove rule 15 by using the proof by perfect induction
at this point. Here is a proof of rule 16 that uses rules that precede it:

XX + XY distributive law

X + XY (since XX = X)

X1 +Y where | + Y = 1, rule 2
=X

XX +Y)

Il

Ii

It is instructive to prove this rule also by perfect induction at this point.

SIMPLIFICATION OF EXPRESSIONS

3.9 The rules given may be used to simplify boolean expressions, just as the
rules of normal algebra may be used to simplify expressions. Consider the expression

X+ VX + X+ 2)

The first two terms consist of X + Y and X + Y; these terms may be multiplied
and, since X + XY + XY = X and YY = 0, reduced to X.

The expression has been reduced now to X(X + Z), which may be expressed
as XX + XZ (rule 14). And since XX is equal to 0, the entire expression (X +
)X + NX + 2) may be reduced to XZ.

Another expression that may be simplified is XYZ + XYZ +X YZ. First the

three terms XYZ + XYZ + XYZ may be written X(YZ + YZ + YZ) by rule 14,
Then, by using rule 14 again, X[Y(Z + Z) + YZ); and since Z + Z equals 1, we
have X(Y + YZ).

The expression X(Y + YZ) may be further reduced to X(Y + Z) by using
rule 18. The final expression can be written in two ways: X(Y + Z) or XY + XZ.
The first expression is generally preferable if the equation is to be congtructed as
an electronic circuit, because it requires only one AND circuit and one OR circuit.

DE MORGAN'’S THEOREMS

3.10 The following two rules are known as De Morgan’s theorems:

It

It

><I><I

(X+)
Y)

X )7

7

DE MORGAN'S
THEOREMS
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The complement of any boolean expression, or a part of any expression, may
be found by means of these theorems. In these rules, two steps are used to form
a complement:

1 The + symbols are replaced with - symbols and - symbols with + symbols.

2  Each of the terms in the expression is complemented.

The use of De Morgan’s theorem may be demonstrated by finding the com-
plement of the expression X + YZ. First, note that a multiplication sign has been
omitted and the expression could be written X + (Y:Z). To complement this, the
addition symbol is replaced with a multiplication symbol and the two terms are
complemented, giving X - (I Y-Z); then the remaining term is complemented,
X(Y + Z). The following eqmvalence has been found: (X + YZ) = X(Y + Z).

The complement of WX + YZ may be formed by two steps:

1 The addition symbol is changed.

2  The complement of each term is formed:
W - X)Y - Z)
This becomes (W + X)¥ + 2).

Since W and Z were already complemented, they become uncomplemented
by the theorem X=X

It is sometimes necessary to complement both sides of an equation. This may
be done in the same way as before:

WX +YZ=0
Complementing both sides gives

_ @XF¥2)=0
W+X)yY+2)=1

BASIC DUALITY OF BOOLEAN ALGEBRA

3.11 De Morgan’s theorem expresses a basic duality which underlies all boolean
algebra. The postulates and theorems which have been presented can all be divided
into pairs. For example, X + Y) + Z = X + (Y + 2) is the dual of (XY)Z =
X(YZ), and X + 0 = X is the dual of X:1 = X.

Often the rules or theorems are listed in an order which illustrates the duality
of the algebra. In proving the theorems or rules of the algebra, it is then necessary
to prove only one theorem, and the dual of the theorem follows necessarily. For
instance, if you prove that X + XY = X, you can immediately add the theorem
X(X + Y) = X to the list of theorems as the dual of the first expression. 8 In effect,
all boolean algebra is predicated on this two-for-one basis.

8When the first expression, X + XY = X, has been complemented, )_(()_( + -Y") = X is obtained. Then
uncomplemented variables may be substituted on both sides of the equation without changing the basic
equivalence of the expression.



TABLE 3.13

INPUTS OUTPUT
X y P4

DERIVATION OF A BOOLEAN EXPRESSION

3.12 When designing a logical circuit, the logical designer works from two sets
of known values: (1) the various states which the inputs to the logical network can
take and (2) the desired outputs for each input condition. The logical expression
is derived from these sets of values.

Consider a specific problem. A logical network has two inputs X and Y and
an output Z. The relationship between inputs and outputs is to be as follows:

When both X and Y are Os, the output Z is to be 1.
When X is 0 and Y is 1, the output Z is to be 0.
When X is 1 and Y is O, the output Z is to be 1.
When X is 1 and Y is 1, the output Z is to be 1.

S W N =

These relations may be expressed in tabular form, as shown in Table 3.13.

It is now necessary to add another column to the table. This column will
consist of a list of product terms obtained from the values of the input variables.
The new column will contain each of the input variables listed in each row of the
table, with the letter representing the respective input complemented when the input
value for this variable is 0 and not complemented when the input value is 1. The
terms obtained in this manner are designated as product terms. With two input
variables X and Y, each row of the table will contain a product term consisting of
X and Y, with X or Y complemented of not, depending on the input values for that
row (see Table 3.14).

Whenever Z is equal to 1, the X and Y product term from the same row is
removed and formed into a sum-of-products expression. Therefore, the product
terms from the first, third, and fourth rows are selected. These are XY, XY, and
XY.

TABLE 3.14

INPUTS OUTPUT PRODUCT
X Y Z TERMS
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e i . i

BOOLEAN ALGEBRA There are now th'ree terms, each the pr.oduct (?f two vgnables The loglf:al

AND GATE sum of these products is equal to the expression desired. This type of expression

NETWORKS is often referred to as a canonical expansion for the function. The complete expres-
sion in normal form is

XY + XY + XY

z

The left-hand side of the expression may be simplified as follows:

i

XY+ XY + XY =2
XY + XF +Y) =
XY+X=12

and finally, by rule 18 in Table 3.10, X + Y=2

The truth table may be constructed to check the function that has been derived
(see Table 3.15). The last column of this table agrees with the last column of the
truth table of the desired function, showing that the expressions are equivalent.

The expression X + Y may be constructed in one of two ways. If only the
inputs X and Y are available, as might be the case if the inputs to the circuit were
from another logical network or from certain types of storage devices, an inverter
would be required to form Y. Then the circuit would require an inverter plus an
OR gate. Generally the complement of the Y input would be available, however,
and only one OR gate would be required for the second way the expression would
be constructed.

Another expression, with three inputs (designated X, Y, and Z), will be
derived. Assume that the desired relationships between the inputs and the output
have been determined, as shown in Table 3.16.

TABLE 3.16
INPUTS OUTPUT

7




TABLE 3.17 75

INPUTS OouTPUT
X Y Z A
Q. il q - S
0. Q B -0
0 1 S0 -1
1. 0 0 A
1 : 1
1 3 1 0 DERIVATION OF A
' : BOOLEAN
EXPRESSION

1 A truth table is formed (see Table 3.17).

2 A column is added listing the inputs, X, ¥, and Z according to their values
in the input columns (see Table 3.18).

3  The product terms from each row in which the output is a 1 are collected
(XYZ, XY_Z,__XYZ,_and XYZ), and the desired expression is the sum of these

products (XYZ + XYZ + XYZ + XYZ). Therefore, the complete expression in
standard form for the desired network is

XYZ + XYZ + XYZ + XYZ = A
This expression may be simplified as shown below:

XYZ + XYZ + XYZ + XYZ
X(YZ + YZ) + X(YZ + YZ)
X[ZY + V)] + XIZY + V)]

XZ + xz

Z:

Il
P A .

Thus the function can be performed by a single inverter connected to the Z
input. Inspection of the truth table will indicate that the output A is always equal
to the complement of the input variable Z.

TABLE 3.18

INPUTS OUTPUT PRODUCT
X Yy - z A TERMS
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FIGURE 3.5

INTERCONNECTING GATES

3.13 The OR gates, AND gates, and inverters described in Secs. 3.3 and 3.4
can be interconnected to form gating, or logic, networks. (Those who study switch-
ing theory would also call these combinational networks.) The boolean algebra
expression corresponding to a given gating network can be derived by systemati-
cally progressing from input to output on the gates. Figure 3.5(a) shows a gating
network with three inputs X, Y, and Z and an output expression (X-¥) + Z. A
network that forms (X-Y) + (X ')_’)~ and another network that forms (X +
Y)«(X + Y) are shown in Fig. 3.5(b) and (c).

We can analyze the operation of these gating networks by using the boolean
algebra expressions. For instance, in troubleshooting a computer, we can determine
which gates have failed by examining the inputs to the gating network and the
outputs and seeing whether the boolean operations are properly performed. The
bookkeeping for computer circuitry is done by means of block diagrams, as in Fig.

Three gating net-
w~vorks.

(c)
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FIGURE 3.6

3.6, which shows a typical print. The use of boolean algebra is spread completely
throughout the computer industry.

SUM OF PRODUCTS AND PRODUCT OF SUMS

3.14 An important consideration in dealing with gating circuits and their alge-

braic counterparts is the form of the boolean algebra expression and the resulting

form of the gating network. Certain types of boolean algebra expressions lead to

gating networks which are more desirable from most implementation viewpoints.

We now define the two most used and usable forms for boolean expressions.
First let us define terms:

1 Product term A product term is a single variable or the logical product of
several variables. The variables may or may not be complemented.

2 Sumterm A sum term is a single variable or the sum of several variables.
The variables may or may not be complemented.

For example, the term X-Y-Z is a product term; X + Y is a sum term; X is both a
product term and a sum term; X + Y- Zis nelther a product term nor a sum term;
X + Yisasumterm; X: Y-Zis a product term; Yisa both a sum term and g product
term. (Commen: Calling single variables sum terms and product termis is disagree-
able but necessary. Since we must suffer with it, remember that some apples are
red, round, and shiny, that is, more than one thing.)

Block diagr'am from a
computer.
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We now define two most important types of expressions.
1 Sum-of-products expression A sum-of-products expression is a product term
or several product terms logically added.
2  Product-of-sums expression A product-of-sums expression is a sum term or

several sum terms logically multiplied.

For example, the expression XY + XVYisa sum-of-products expression; (X
+ Y)XX + Y) is a product-of-sums expression. The following are all sum-of-
products expressions:

P P
+ =i~

tZ__
+XYZ
Y

The following are product-of-sums expressions:

X+DX+7)X+7Y)
X+Y+2)X+)X+7Y)
X+2Z

X

X + V)X

One prime reason for liking sum-of-products or product-of-sums expressions
is their straightforward conversion to very nice gating networks. In their purest,
nicest form they go into rwo-level netwprks, which are networks for which the
longest path through which a signal must pass from input to output is two gates.

Note: In the following discussion we assume that when a variable X is avail-
able, its complement X is also available; that is, no inverters are required to com-
plement inputs. This is quite important and quite realistic, since most signals come -
from flip-flops, which we study later, and which provide both an output and its
complement.

Figure 3.7 shows several gating networks. Figure 3.7(a) shows sum-of-prod-
ucts networks, and Fig. 3.7(b) shows product-of-sums networks. The gating net-
works for sum-of-products expressions in ‘‘conventional’’ form—that is, expres-
sions with at least two product terms and with at least two variables in each product
term—go directly into an AND-to-OR gate network, while conventional product-
of-sums expressions go directly into OR-to-AND gate networks, as shown in the
figure.

DERIVATION OF PRODUCT-OF-SUMS EXPRESSIONS

3.15 The sequence of steps described in Sec. 3.12 derived a sum-of-products
expression for a given circuit. Another technique, really a dual of the first, forms
the required expression as a product-of-sums. The expression derived in this manner
is made up, before simplification, of terms each consisting of sums of variables



Qo

ABC + DEF

i Rw)

=~

N~

(A+B+0Q)

Qo>

(A+B+C)(D+E+F)

i)

(D+E+F)

>

(X+Y)

=~

X+ (X+Y+2)

N~

(X+Y+2)

(b)

such as (X + Y + Z) ---. The final expression is the product of these sum terms
and has the form (X + Y + HX+Y+2Z)y—-X+Y + 2).
The method for arriving at the desired expression is as follows:

1 Construct a table of the input and output values.

2 Construct an additional column of sum terms containing complemented and
uncomplemented variables (depending on the values in the input columns) for each
row of the table. In each row of the table, a sum term is formed. However, in this
case, if the input value for a given variable is 1, the variable will be complemented;
and if 0, n. complemented.

3  The desired expression is the product of the sum terms from the rows in
which the output is 0.

78
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FIGURE 3.7

(a) AND-to-OR gate
networks. (b} OR-to-
AND gate networks.
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INPUTS OUTPUT
X Y z
0 0 1
0 1 0
1 0 0
1 1 1

The use of these rules is illustrated by working examples in this and the following
sections.

Table 3.19 contains the input and output values which describe a function to
be realized by a logical network.

A column containing the input variables in sum-term form is now added in
each row. A given variable is complemented if the input value for the variable is
1 in the same row and is not complemented if the value is 0 (see Table 3.20).
Each sum term is. therefore, simply the complement of the product term which
occurs in the same row in the previous table for sum-of-products expressions.
Notice that the sum term X + Y in the third row of Table 3.20 is the complement
of the product term XY used in the sum-of-products derivation.

A product-of-sums expression is now formed by selecting those sum terms
for which the output is O and. multiplying them. In this case, Os appear in the second
and third rows, showing that the desired expression is (X + Y)(X + Y). A sum-
of-products expression may be found by multiplying the two terms of this expres-
sion, yielding XY + XY. In this case the same number of gates would be required
to construct circuits corresponding to both the sum-of-products and the product-of-
sums expressions.

DERIVATION OF A THREE-INPUT-VARIABLE EXPRESSION

3.16 Consider Table 3.21, expressing an input-to-output relationship for which
an expression is to be derived. Two columns will be added this time, one containing
the sum-of-products terms and the other the product-of-sums terms (see Table
3.22). The two expressions may be written in the following way:

Sum-of-products:

XYZ + XYZ + XYZ = A

TABLE 3.20
INPUTS

OUTPUT
Zz




R T o
INPUTS OUTPUT

X Y Z A

DERIVATION OF A

THREE-INPUT-

VARIABLE

) EXPRESSION
Product-of-sums:

X+Y+ DX +Y+2) X+ Y+ DX+ Y+ )X +Y+2) =4
The two expressions may be simplified as shown:

__ SUM OF PRODUCTS
(XYZ) + (XYZ) + (XYZ) =
X(YZ + YZ) + (XYZ) = A

XY + XYZ= A
Y(X + XZ)-
XY +YZ=A

PRODUCT OF SUMS
(X+Y+Z)(X+Y+Z)(X+Y+Z)(X+Y+Z)(X+Y+2) A
X+NX+YX+2)=4
YX+2Z2)=A

The two final expressions clearly can be seen to be equivalent. Notice, how-
ever, that the shortest sum-of-products expression, which is XY + YZ, requires
two AND gates and an OR gate (Fig. 3.8), while the shortest product-of-sums
expression, Y(X + Z), requires only a single AND gate and a single OR gate. In
some cases the minimal sum-of-products expression will require fewer logical ele-
ments to construct, and in other instances the construction of the minimal product

INPUTS OUTPUT PRODUCT

X Y V4 A TERMS SUM TERMS
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FIGURE 3.8
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Networks for Y(X +
Z) and XY + YZ.

FIGURE 3.9

of sums will require fewer elements. If the sole criterion is the number of logical
elements, it is necessary to obtain both a minimal sum-of-products expression and
a minimal product-of-sums expression to compare the two. It is possible first to
derive the canonical expansion expression for the network to be designed in one
of the forms—for instance, product of sums—to simplify the expression, and then
to convert the simplified expression to the other form, by using the distributive
laws. Then any additional simplification which is required can be performed. In
this way, minimal expressions in each form may be obtained without deriving both
canonical expansions, although this may be desirable.

The simplification techniques which have been described are algebraic and
depend on judicious use of the theorems that have been presented. The problem
of simplifying boolean expressions so that the shortest expression is always found
is quite complex. However, it is possible, by means of the repeated use of certain
algorithms, to derive minimal sum-of-products and product-of-sums expressions.
We examine this problem in following sections.

NAND GATES AND NOR GATES

3.17 Two other types of gates, NAND gates and NOR gates, are often used in
computers. It is fortunate that the boolean algebra which has been described can
be easily used to analyze the operation of these gates.

A NAND gate is shown in Fig. 3.9. The inputs are A, B, and C, and the
output from the gate is written A + B + C. The output willbe a 1 if Ais a 0 or
Bisa0or Cis a0, and the output will be a 0 only if A-and B and C are all Is.

The operation of the gate can be analyzed using the equivalent block diagram
circuit shown in Fig. 3.9, which has an AND gate followed by an inverter. If the

NAND gate.

Qx>




g (A+B+C)=A'B-C
c
(a)
A+B+C
A
B
C

\ »g +B+0)
A-BC
(b)
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FIGURE 3.10

inputs are A, B, and C, the output of the AND gate will be A-B-C, and the
complement of this is (A-B-C) = A + B + C, as shown in the figure.

The NOR gate can be analyzed in a similar manner. Figure 3.10 shows the
NOR gate block diagram symbol with inputs, A, B, C and output ABC. This shows
the NOR gate’s output will be a 1 only when all three inputs are Os. If any input
represents a |, the output of a NOR gate will be a 0.

Below the NOR gate block diagram symbol in Fig. 3.10 is an equivalent
circuit showing an OR gate and an inverter.® The inputs A, B, and C are ORed by
the OR gate, giving A + B + C, which is complemented by the inverter, yielding
(A+ B+ C) = ABC.

Multiple-input NAND gates can be analyzed similarly. A four-input NAND
gate with inputs, A, B, C, and D has an output A + B + C + D, which says
that the output will be a 1 if any one of the inputs is a 0 and will be a 0 only when
all four inputs are lIs.

Similar reasoning will show that the output of a four-input NOR gate with
inputs A, B, C, and D can be represented by the boolean algebra expression
ABCD, which will be equal to 1 only when A, B, C, and D are all Os.

If one of the two input lines to a two-input NAND gate contained the input
A + B and the other contained C + D, as shown in Fig. 3.11(a), the output from
the NAND gate would be

[A + B)C + D)] = AB + CD

We can show this by noting that the NAND gate first ANDs the inputs (in this
case A + B and C + D) and then complements this.

If one of the input lines to a two-input NOR gate contained the signal A-B
and the other input line contained the signal C-D, the output from the NOR gate
would be (A'-B + C-D) = (A + B)(C + D), as shown in Fig. 3.11(b).

“The **bubble,"" or small circle, on the output of the NAND and NOR gates represents complementation.
The NAND can be seen to be an AND symbol followed by a complementer, and the NOR can be
analyzed similarly.

(a) Block diagram
symbol for a NOR
gate. (b) OR gate and
inverter equivalent
circuit to NOR gate.
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FIGURE 3.11

[{A +B)(C+D)] =AB+CD

(a)

(AB +CD) = (A + B){C + D)

(b}

Two types of gating

networks. (a) QR-to-

NAND gate network.
(b) AND-to-NOR gate
network.

Notice that we can make an AND gate from two NAND gates, using ‘he
trick shown in Fig. 3.12, and a two-input OR gate from three NAND gates, as is
also shown in the figure. A set of NAND gates can thus be used to make any
combinational network by substituting the block diagrams shown in Fig. 3.12 for
the AND and OR blocks. (Complementation of a variable, when needed, can be
obtained from a single NAND gate by connecting the variable to all inputs.)

The NOR gate also can be used to form any boolean function which is
desired, and the furidamental tricks are shown in Fig. 3.13.

Actually, it is not necessary to use the boxes shown in Figs. 3.12 and 3.13
to replace AND and OR gates singly, for a two-level NAND gate network yields
the same function as a two-level AND-to-OR gate network, and a two-level NOR
gate network yields the same function as a two-level OR-to-AND gate network.
This is shown in Fig. 3.14. Compare the output of the NAND gate network with
that in Fig. 3.7, for example. In Secs. 3.21 and 3.22 design procedures for NAND
and NOR gate networks are given.

MAP METHOD FOR SIMPLIFYING EXPRESSIONS

*3.18'° We have examined the derivation of a boolean algebra expression for
a given function by using a table of combinations to list desired function values.
To derive a sum-of-products expression for the function, a set of product terms
was listed, and those terms for which the function was to have a value 1 were
selected and logically added to form the desired expression.

The table of combinations provides a nice, natural way to list all values of
a boolean function. There are several other ways to represent or list function values,
and the use of certain kinds of maps, which we will examine, also permits min-
imization of the expression formed in a nice graphic way.

The particular type of map we use is called the Karnaugh map after its
originator.'' Figure 3.15 shows the layouts for Karnaugh maps of two to four

1%Sections with asterisks can be omitted in a first reading without the loss of continuity.
"'Similar maps are sometimes called Veirch diagrams.
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variables. The diagram in each case lists the 2" different product terms which can '

be formed in exactly n variables, each in a different square. For a function of n
variables, a product term in exactly these n variables is called a minterm. Thus for
three variables X, Y, and Z there are 33, or 8, different minterms, which are
)?172, X'YZ, )_?YZ X’YZ, Xl—/Z, X?Z, XYZ, and XYZ. For four variables there are
2%, or 16, terms; for five variables there are 32 terms:; etc. As a result, a map of
n variables will have 2" squares, each representing a single minterm. The minterm
in each box, or cell, of the map is the product of the variable_s listed at the abscissa
and ordinate of the cell. Thus XYZ is at the intersection of XY and Z.

Given a Karnaugh map form, the map is filled in by placing 1s in the squares,
or cells, for each term which leads to a 1 output.

As an example, consider a function of three variables for which the following

input values are to be 1:

-
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AND and OR gates
from NOR gates.



86

Qo

ABC + DEF
O

plole)

D+F+F

BOOLEAN ALGEBRA 4
AND GATE B
NETWORKS (o
(A+B+C)(D+E+F)
D
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FIGURE 3.14

NAND and NOR
gates in two-level
networks. This function is shown in Fig. 3.16(a) in both table-of-combinations and Karnaugh
map form. Another function of four variables is shown in Fig. 3.16(b).
As a means for displaying the values of a function, the Karnaugh map is
convenient and provides some “‘feeling’’ for the function because of its graphic

FIGURE 3.15

Karnaugh maps for
(a) two, (b) three, and
(c) four variables.
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presentation. Its chief use. however, is due to the arrangement of cells. Each cell
differs from its adjacent cell by having exactly one variable complemented in the
minterm in one cell which is not complemented in the minterm in the adjacent
cell.

As an example, consider the four-variable map in Fig. 3.16 and the minterm
WXYZ. There are four cells adjacent to the cell containing WXYZ. These contain
(1) WXYZ, which differs in the variable W; (2) WXYZ, which differs from
WXYZ in X; (3) WXYZ, which differs from WXYZ in Y; and (4) WXYZ. which
differs from WXYZ in Z.

One trick should be noted at this point. The maps are considered to be

Two Karnaugh maps.
(a) Map of boolean
expression XYZ +
XYZ + XYZ + XYZ.
(b) Map of four-varia-
ble function.
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“‘rolled,”’ or continuous, so that top and bottom edges or left and right side edges
are touching. For the three-variable map, consider the left side edge and the right
side edge to be touching, so that the map is considered to be rolled like a hoop
horizontally on the page. This places the cell containing XYZ next to XYZ, as well
as to XYZ and XYZ. Also, for this map it placgs_)Z?Z next to XYZ, which touches
because of the rolling, as well as to XYZ and XYZ.

For the four-variable map, the map is rolled so that the top edge touches the
bottom edge, and the left side touches the right side. The touching of top and
bottom places WXYZ next to WXYZ, and the left side to the right side edges
touching places WXYZ next to WXYZ.

A good rule to remember is that there are two minterms adjacent to a given
minterm in a two-variable map; there are three minterms next to a given minterm
in a three-variable map; there are four minterms next to a given minterm in a four-

variable map; etc.

SUBCUBES AND COVERING

3.19 A subcube is a set of exactly 2™ adjacent cells containing 1s. Form = 0
the subcube consists of a single cell (and thus of a single minterm). Form = 1 a
subcube consists of two adjacent cells; for instance, the cells containing XYZ and
XYZ form a subcube. as shown in Fig. 3.17(a), as do X¥Z and XYZ (since the
map is rolled).

For m = 2 a subcube has four adjacent cells, and several such subcubes are
shown in Fig. 3.17(c¢). Notice that here we have omitted Os for clarity and filled
in only the 1s for the function. This policy will be continued.

Finally, subcubes containing eight cells (for m = 3) are shown in Fig.
3.17(d).

(It is sometimes convenient to call a subcube containing two cells a 2 cube,
a subcube of four cells a 4 cube, a subcube of eight cells an 8 cube, etc., and this
is done often.)

To demonstrate the use of maps and subcubes in minimizing boolean algebra
expressions, we need to examine a rule of boolean algebra:

AX + AX = A

In the above equation, A can stand for more than one variable. For instance,
let A = WY, then we have

(WY)X + (WYX = WY
Orlet A = WYZ; then we have
WYZX + WYZX = WYZ
The basic rule can be proved by factoring

AX + AX = AX + X)
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FIGURE 3.17

Then since X + X = I, we have

AX + AX = AX + X) = A1 = A

Each of the examples given can be checked similarly; for instance,

This rule can be extended. Consider

WYZX + WYZX = WYZX + X) = WYZ-1 = WYZ

WXYZ + WXYZ + WXYZ + WXYZ

Subcubes with two,
four, and eight cells.
Blank cells are as-
sumed to contain 0Os.
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There are four terms here. each with two variables WX constant while the other
two variables Y and Z take all possible values. The term WX is equal to the sum
of the other terms, for

WXY(Z + Z) + WXY(Z + Z)
WXY + WXY

WX(Y + Y)

= WX

WXYZ + WXYZ + WXYZ + WXYZ

I

Il

Thus WX could be substituted for the other four terms in an expression
without changing the values the expression takes for any input values to the vari-
ables, that is, WX = WXYZ + WXYZ + WXYZ + WXYZ.

On a map the above algebraic moves may be performed easily. Since a
subcube of two cells has both cells with a single variable differing, a product term
in just those variables which do not differ will cover (can be substituted for) the
two minterms in the two cells. L _

Consider the subcube of two cells for XYZ and X YZ on the three-variable
map in Fig. 3.17(a). The single product term XZ is equal to the sum of these two
minterms; that is,

XYZ + XYZ = XZ

Similarly, the two cells containing minterms XYZ and XYZ form a subcube of two
cells, as shown in Fig. 3.17(a), from which we form YZ, which can be substituted
for XYZ + XYZ in an expression.

Similarly, the subcube of four cells in a three-variable map [Fig. 3.17(b)]

with terms XYZ, XYZ, XYZ, XYZ has a single-variable constant Y. Therefore we
have Y = XYZ + XYZ + XYZ + XYZ.

In general, a subcube with 2” cells in an n-variable map will have n — m
variables, which are the same in all the minterms, and m variables which take all
possible combinations of being complemented or not complemented. Thus for a
four-variable map for m = 3, any eight adjacent cells which form a subcube will
have 4 — 3 = 1 variable constant and three variables which change complemen-
tation from cell to cell. Therefore, a subcube of eight cells in a four-variable map
can be used to determine a single variable which can be substituted for the sum of
the minterm in all eight cells.

As an example, in Fig. 3.17(d) we find a subcube of eight cells with the
minterms WXYZ, WXYZ, WXYZ, WXYZ, WXYZ, WXYZ, WXYZ, and WXYZ. The
sum of these will be found to be equivalent to Z.

The set of minterms in an expression does not necessarily form a single
subcube, however, and there are two cases to be dealt with. Call a maximal subcube
the largest subcube that can be found around a given minterm. Then the two cases
are as follows:

1 All maximal subcubes are nonintersecting; that is, no cell in a maximal
subcube is a part of another maximal subcube. Several examples are shown in
Fig. 3.18.
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Maps with disjoint

) subcubes. (a) Map for

2 The maximal subcubes intersect; that is, cells in one maximal subcube are = WX + WXZ. (b) Map
also in other maximal subcubes. Figure 3.19 shows examples of this. for XZ + XYZ. (c)
Map for XZ + XZ.

Case 1 is the more easily dealt with. In this case, the product terms corre-
sponding to the maximal subcubes are selected, and the sum of these forms a
minimal sum-of-products expression. (In switching theory, the product term cor-
responding to a maximal subcube is called a prime implicant.)

Figure 3.18(a) shows an example of this in four variables. There is a subcube
of two cells containing WXYZ and WXYZ which can be covered by the product

term WXZ. There is also a subcube of four cells containing WXYZ, WXYZ,
WXYZ, and WXYZ which can be covered by WX. The minimal expression is,
therefore, WX + WXZ.

Two other examples are shown in Fig. 3.18(b) and (c¢). In each case the
subcubes do not intersect or share cells, and so the product term (prime implicant)
which corresponds to a given maximal subcube can be readily derived, and the
sum of these for a given map forms the minimal expression.

When the subcubes intersect, the situation can be more complicated. The
first principle to note is this: Each cell containing a 1 (that is, each 1 cell) must
be contained in some subcube which is selected.

Figure 3.19(a) shows a map with an intersecting pair of subcubes plus another
subcube. The minimal expression is, in this case, formed by simply adding the
three product terms associated with the three maximal subcubes. Notice that a

FIGURE 3.19

— _ — _ - — —_ — — .Intersecting sub-
WX WX WX WX WX WX WX WX WX WX WX WX  cubes. (a) WXZ +

—_ —_— - XYZ + XYZ. (b) XZ
YZ YZ YZ ' + WYZ (0) YZ +

Yz YZ vz wXZ.
YZ YZ YZ
vz @D ‘ vZ| YZ

(a) (b) (c)
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FIGURE 3.20

WX WX WX WX WX WX WX WX
YZ (¥ YZ
vz |G [P YZ
YZ 1 8 YZ
YZ YZ
(a) (b)

Intersecting subcubes
and solution. (a) XZ
+ WYZ + WYZ +
WXY + WXY.

(b) WXY + WYZ +
WXY + WYz

single term, WXYZ, is shared between two subcubes and, because of this, is ef-
fectively in the minimal expression twice. This is permissible because of the idem-
potent rule of boolean algebra, A + A = A, which states that repetition of terms
does not change functional equivalence.

Two other examples of intersecting maximal subcubes are shown in Fig.
3.19(b) and (c).

As long as the maximal subcubes can be readily found and there are no
options in subcube selection, the minimization problem is straightforward. In some
cases the problem is more complicated. Figure 3.20 shows an expression with a
subcube of four cells in the center of the map, which is maximal. The selection of
this maximal subcube does not lead to a minimal expression, however, because
the four cells with 1s around this subcube must be covered also. In each case these
1 cells can be found to have a single adjacent cell and so to be part of maximal
subcubes consisting of 2 cells. In Fig. 3.20(a), WXYZ is in a cell adjacent to only
WXYZ and so forms part of a 2 cell. Figure 3.20(b) shows another way to form
subcubes for the map, and this leads to the minimal expression WXY + WYZ +
WXY + WYZ.

The finding of minimal expressions for such maps is not direct, but follow
these rules:

1 Begin with cells that are adjacent to no other cells. The minterms in these
cells cannot be shortened and must be used as they are.

2  Find all cells that are adjacent to only one other cell. These form subcubes
of two cells each.

3 Find those cells that lead to maximal subcubes of four cells. Then find sub-
cubes of eight cells, etc.

4 The minimal expression is formed from a collection of as few cubes as
possible, each of which is as large as possible, that is, each of which is a maximal
subcube.

Figure 3.21 shows an example of a difficult map. The maximal subcubes can
be selected in several ways so that all cells are covered. The figure shows three
maps, of which only one leads to a minimal expression. Practice with various maps
will lead to skill in finding minimal expressions.
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YZ
YZ

YZ
YZ
fa) (6) fe) FIGURE 3.21
Three coverings of
the same map. (a) XZ
+ XYZ + WXY_+__
PRODUCT-OF-SUMS EXPRESSIONS—DON'T-CARES WXY. (b) XZ + XVZ

+ WXY + WYZ.
3.20 The technique for product-of-sums expressions is almost 1dentical with the (¢} XZ + WYZ +
design procedure using sum-of-products expressions. The basic rule can be stated WXV-
quite simply: Solve for Os, then complement the resulting expression.
Let us take an example. Figure 3.22(a) shows a table of combinations and a
Karnaugh map for a four-variable problem. In Fig. 3. 22(a) the sum-of-products
expression is derived and in minimal form is found to be XY + YZ + WY.
In Fig. 3.22(b) the same problem is solved for the Os, which gives XY +
WYZ. Since we have solved for Os, we have solved for the complement of the
desired problem. If the output is called F, then we have solved for F. We then
write F = XY + WYZ.

FIGURE 3.22
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Don’t-care conditions.
(a) Map for table with
don't cares. (b) Solv-
ing another map with Now, what is wanted is F; so both sides of this expression are complemented,

don't-cares. and we have
F=X+Y)W+Y+2

This expression is in product-of-sums form and is somewhat simpler than the sum-
of-products expression.

If sum-of-products and product-of-sums expressions are equally easy to im-
plement, then a given problem must be solved in both forms and the simpler
solution chosen. There is no way to determine which will be simpler other than
by a complete working of the problem.

There is another frequently encountered situation in which certain outputs are
not specified in a problem. Such outputs are called don’t-care outputs, for the
designer does not care what the outputs are for these particular inputs.

Figure 3.23(a) shows such a problem with 6 of the possible 16 output values
listed as d’s (don’t cares). This is a part of a BCD translator, and so these particular
six input combinations are never used.

Since don’t care output values are of no importance, they may be filled in
with 1s and Os in any way that is advantageous. Figure 3.23(a) shows a Karnaugh
map of the table of combinations in the figure, with d’s in the appropriate places.
In solving this table, a d may be used as either a 1 or a 0; so the d’s are used to
enlarge or complete a subcube whenever possible, but otherwise are ignored (that
is, made 0). The d's need not be covered b’v the subcubes selected, but are used
only to enlarge subcubes containing Is, which must be covered.

In Fig. 3.23(a), the vertical string of four d’s in the WX column is of use
twice, once in filling out, or completing, the top row of 1s and once in completing



the third row. These subcubes give the terms YZ and YZ; so the minimal sum-of-
products expression is ¥Z + YZ. Notice that if all the d’s were made Os, the
solution would require more terms.

Another problem is worked in Fig. 3.23(b). For this problem the solution is
WZ + WY. Notice that two of the d's are made 0s. In effect, the d’s are chosen
so that they lead to the best solution.

DESIGN USING NAND GATES

3.21  Section 3.17 introduced NAND gates and showed the block diagram sym-
bol for the NAND gate. NAND gates are widely used in modern computers, and
an understanding of their use is invaluable.

Any NAND gate network can be analyzed by using boolean algebra, as
previously indicated. Sometimes it is convenient, however, to substitute a func-
tionally equivalent block diagram symbol for the conventional NAND gate symbol
in order to analyze a block diagram. Figure 3.24 shows a gate symbol that consists
of an OR gate symbol with ‘‘bubbles’ (inverters) at each input. The two block
diagram symbols in Fig. 3.24 perform the same function on inputs, as shown, for
the NAND gate yields A + B + C on these inputs A, B, and C, as does the
functionally equivalent gate.

As an example of the use of an equivalent symbol to simplify the analysis
of a NAND gate network, we examine Fig. 3.25(a). This shows a two-level NAND-
to-NAND gate network with inputs A, B, C, D, E, and F. Figure 3.25(b) shows
the same network, but with the rightmost NAND gate replaced by the functionally
equivalent block diagram symbol for a NAND gate previously shown in Fig. 3.24.
Notice that the output function is the same for Fig. 3.25(b) as for Fig. 3.25(a), as
it should be. Finally, an examination of the fact that the bubbles in Fig. 3.25(b)
always occur in pairs, and so can be eliminated from the drawing from a functional
viewpoint (since X = X), leads to Fig. 3.25(c), which is an AND-to-OR gate
network. This shows that the NAND-to-NAND gate network in Fig. 3.25(a) yields
the same function as the AND-to-OR gate network in Fig. 3.25(c).

The substitution of the equivalent symbols followed by the removal of the
““double bubbles’’ in Fig. 3.25 is a visual presentation of the following use of
De Morgan's ru]e,\which should be compared with the transformation in the figure:

(AB) - (C'D) - (EF) = (AB) + (CD) + (EF) = AB + C-D + EF

Study of the above will show that the same principle applies to NAND-to-
NAND gates in general. As a further example, Fig. 3.26 shows another NAND-

Ao

NAND gate Functionally equivalent
gate symbol

DESIGN USING
NAND GATES

FIGURE 3.24

NAND gate and func-
tionally equivalent
gate.
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FIGURE 3.25

(A-B)(C-D)(E-F)

? =(A B+ {C-D)+E - F)
E-F =AB+(CD +EF
F
(a)
A A-B
B
Y =AB +CD + EF
E-F

(b)

AB+CD +EF

(c)

NAND-to-NAND gate
analysis. (a) NAND
gate network. (b) Net-
work in {a) with
equivalent gates.

(c) AND-to-OR gate
network.

to-NAND gate network and the transformation to an AND-to-OR gate network.
The algebraic moves equivalent to the symbology substitutions also are shown.
A question may arise as to why drawings of NAND gate networks in com-
puter diagrams do not use either the equivalent symbol (as in Fig. 3.24) or even
the AND-to-OR gate symbols in Figs. 3.25 and 3.26. There are several reasons.
First, the industrial and military specifications call for gate symbols to reflect the
actual circuit operation. Therefore, if a circuit ANDs the inputs and then comple-
ments the result, the circuit is a NAND gate and, strictly speaking, the original
NAND gate symbol should be used. Also, if the circuits used are contained in
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integrated-circuit packages and the computer drawing calls out the part number for
the IC packages, an examination of the manufacturer’s IC package drawings will
show NAND gate symbols (if NAND gates are in the IC package). In the next
chapter we show such packages and clarify this. In any case, substitution of sym-
bols might easily lead to confusion, and it seems best to use the NAND gate symbol
when NAND gates are used.

The above analysis of two-level NAND gate networks leads to a direct pro-
cedure for designing a NAND-to-NAND gatc network.

DESIGN RULE

- To design a two-level NAND-to-NAND gate network, use the table-

_of<combinations procedure for a sum-of-products expression.

Simplify this sum-of-products expression by using maps, as has <
.been shown. Finally, draw a NAND-to-NAND gate network in the -

“+two-level form, and write the same inputs as would have been

~ used in an AND-to-OR gate network, except use NAND gates in
place of the AND and OR gates.

NAND-to-NAND and
AND-to-OR gate
transformation.
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TABLE 3.23

INPUTS OUTPUT
A wg,ﬁjjw o :

For example, let us design a NAND-to-NAND gate network for a problem with
three inputs A, B, and C and the problem definition in Table 3.23. The table of
combinations for this function, map, simplified expression, and NAND-to-NAND
gate network is shown in Fig. 3.27. (It would be possible to go directly to the map
from the above specification. The table of combinations is shown for complete-
ness.)

An adjustment is necessary if the simplified expression contains a single
variable as a product term. For instance, if the simplified expression is A + BC
+ BC, then the ‘‘natural’’ network is as shown in Fig. 3.28(a). Notice, however,
that the NAND gate at the A input is unnecessary if A is available, and this leads
to the form shown in Fig. 3.28(b), which eliminates this gate. [The same simpli-
fication could be repeated if several single variables occur (as product terms) in
the simplified expression.]

DESIGN USING NOR GATES

3.22 NOR gates are used often in computers because current IC technology
yields NOR gates in efficient, fast circuit designs. Fortunately the design of a
NOR-to-NOR gate network, which is the fastest form in which all functions can
be realized by using only NOR gates, follows naturally from previous design
techniques, as will be shown.

First note that a symbol functionally equivalent to the NOR gate exists and
is shown in Fig. 3.29. The change of the block design symbols mirrors De Mor-
gan’s rule:

A+B+C=ABC

Figure 3.30(a) shows a NOR-to-NOR gate network having the output func-
tion (A + B) (C + D) (E + F). To analyze this network, we substitute the
functionally equivalent symbol for the rightmost NOR gate, as shown in Fig.
3.30(b). This yields the same function, but an examination of Fig. 3,30(b) shows
the bubbles occurring in pairs. Since X = X, these can be eliminated as shown in
Fig. 3.30(c), which is for OR-to-AND gate networks.
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Design of two-level
NAND-to-NAND gate.
The transformation in the block diagrams of Fig. 3.30 from (a) to (b) to (c)
mirrors the following boolean algebra moves:

(A+B)+ (C+D)YEH+F)

(A+B)Y(C +D)E+F)
=(A+B)(C+ D)(E+F)

This shows that a NOR-to-NOR gate network is functionally equivalent to an OR-
to-AND gate network. Figure 3.31 shows another example of this. A NOR-to-
NOR gate network is transformed to an OR-to-AND gate network, and the cor-
responding algebraic transformations are shown.
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Equivalent NAND-to-

NAND gate designs.

(a) Natural NAND-to-

NAND gate design. Examination of the above leads to a rule for the design of a NOR-to-NOR

(b) Equivalent NAND- . . ) . .
to-NAND gate net- gate network, given the input-output specifications.

work.

DESIGN RULE

To design a NOR-to-NOR gate network, use the procedures for
designing an OR-to-AND gate network. Simplify, using maps as
for the OR-to-AND gate networks. Finally, draw the block diagram
in the same form as for the OR-to-AND gate networks, but substi-
tute NOR gates for the OR and AND gates.

Figure 3.32 shows two examples of NOR-to-NOR gate designs, including
the simplification of networks where a single variable occurs as sum term.

FIGURE 3.30

NOR gate symbol
and equivalent gate.

NOR gate Equivalent gate



